中国科学院生物物理研究所赵岩团队,联合中国科学院物理研究所姜道华等,利用冷冻电镜技术揭开了多种关键神经递质转运体的神秘面纱,系统阐明了它们识别并转运神经递质多巴胺、去甲肾上腺素、甘氨酸和囊泡单胺的过程。此外,该研究揭示了神经递质转运体与多种精神疾病药物的精准作用机制,展现了不同神经递质转运体多样化、特异性的药物结合口袋,并发现了新型低成瘾性药物结合位点,为设计副作用小、成瘾性低的精神疾病治疗药物提供了结构基础。
该进展不仅深化了对神经递质介导大脑信息传递的理解,也为开发更高效、更安全的精神疾病药物奠定了基础,具有重要的临床转化价值。
04
实现原子级特征尺度与可重构光频相控阵的纳米激光器
20世纪的四大发明中,晶体管和激光器占据重要地位。晶体管依托电子,激光器依托光子。电子和光子作为两类基本粒子,均可用于承载能量与信息。电力的广泛应用推动了工业革命和现代化进程,极大提升了社会生产力;而作为信息载体的电子芯片,则催生了信息技术革命,引领人类迈入数字化时代。自1960年美国科学家梅曼成功研制出首台激光器以来,激光技术便在两个极端方向上不断拓展:一方面,向超高功率发展,例如用于可控核聚变的中国神光激光装置。正如钱学森先生形象地描述,这一技术相当于在地球上创造一个“小太阳”,未来有望提供稳定而持久的清洁能源。另一方面,激光器的微型化趋势日益加速。正如晶体管的微缩推动了电子芯片的发展,微型激光器的进步极大促进了光子技术的革新。
在这一背景下,北京大学马仁敏等提出了奇点色散方程,建立了介电体系突破衍射极限的理论框架,并成功研制出模式体积最小的激光器——奇点介电纳米激光器,首次将激光器的特征尺度推进至原子级别。此外,他们还基于纳米激光器构建了可重构光频相控阵,使得纳米激光器阵列可以“同步起舞”,生成可重构的任意相干激射图案。相较于常规激光器,纳米激光器具有小体积、低能耗等特点,在信息技术、传感探测等领域具有广阔的应用前景。
05
发现自旋超固态巨磁卡效应与极低温制冷新机制
超固态是一种在极低温环境下涌现的新奇量子物态,于20世纪60年代末,由诺贝尔物理学奖得主A.Leggett等学者从理论上提出。超固态的独特之处在于同时具备固体与超流体的双重特性,并通过量子叠加效应共存于同一系统中。经多年研究,除冷原子气模拟实验取得进展外,在固体物质中尚未能寻觅到超固态存在的确凿实验证据。因此,在《科学》杂志创刊125周年之际公布的全世界最前沿的125个科学问题中,“固体中是否可能存在超流现象?如何实现?”被列为其中之一。
中国科学院理论物理研究所/中国科学院大学苏刚、李伟,中国科学院物理研究所孙培杰和北京航空航天大学金文涛等在三角晶格阻挫量子磁体磷酸钠钡钴中取得了重大突破。研究发现该阻挫量子磁体实现超固态的磁性对应,即自旋超固态。中子谱学给出了其固态序和超流序共存的证据,与理论预测高度符合,这是首次在固体材料中找到自旋超固态存在的可靠实验证据。
该团队还发现该自旋超固态的巨磁卡效应,利用其强涨落的量子特性,在磁场调控下成功实现了94mK(零下273.056摄氏度)的极低温,开辟了无氦-3极低温固体制冷新途径。目前,所研发的固态制冷测量器件已实现了无氦-3条件下的极低温电导测量,最低测量温度达到25mK。其他面向实际应用的固态制冷器件也在探索与研制中。随着量子材料固态制冷技术的不断发展,有望为量子科技、空间探测等国家重大需求提供重要的技术支撑。
06
异体CAR-T细胞疗法治疗自身免疫病
长期以来,彻底治愈红斑狼疮、硬皮病、多发性硬化症等自身免疫性疾病,是全球共同面临的医学难题。现有免疫抑制药物虽然可在一定程度上缓解病情,却不总能阻止疾病的进展,反而可能带来严重的副作用。自体CAR-T疗法在自身免疫病的治疗中已取得了初显疗效,但与自体CAR-T疗法不同,同种异体CAR-T细胞具有显著的优势,因为它们具备“异体通用性”,即可以使用标准化的异体细胞产品为不同患者提供治疗,无需个性化制备,简化了治疗流程并提高了可及性。